MATHEMATICAL THEORY OF THE STATIONARY PROPAGATION
VELOCITY OF A FINE-SCALE TURBULENT FLAME
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A boundary-value problem in the theory of propagation of a fine-scale turbulent flame is in-
vestigated, taking into account the influence of temperature and concentration pulsations on
the magnitude of the heat liberation rate. In contrast to [1], the case when a second-order re-
action proceeds in the flame is examined in detail. Conditions are found for the existence of
a turbulent flame; the structure of the flame front is studied by a computational method, A
change in the progress of the reaction is disclosed near the propagation limits.

1. Mathematical Formulation of the Problem

It has been shown in [1] that under the condition of equality of the laminar transport coefficient and
their turbulent analogs. and without taking account of the thermal expansion of the medium (constant density)
the following boundary-value problem should be solved to find the turbulent combustion rate; given the
equation

dpldu=®/p— 0, ©O<ut) (1.0
and the boundary conditions
p0 =0 p(1)=0 (1.2)
where

. F 0wt Fp) ], e u—F )
20 2= 20 = (u - PP exp [ T b T pny] (= Fpfexp[ T30 =] 0<ui<e)
2D =0 (e<u<y)

F>0,0,>0,0<0<1

Find the unique value «,>0. if it exists, for which the solution of (1.1) will satisfy the conditions
(1.2),

Here u, p. ®, and w, are respectively the dimensionless temperature, temperature gradient, mean
chemical reaction rate, and velocity of flame propagation. The parameters F, 6, ¢ are known. The rela-
tion between the dimensionless and dimensional quantities is given in [1].

2. Existence and Uniqueness

Two solutions issue from the point (0.0), which is singular for (1.1). Only the positive solution for
which

9P gy =0 2.1)

du
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which has physical meaning, will be examined below.

First, let us investigate the properties of the solution of the Cauchy problem
dpl/du =@, /p— o, p(0) =0 (2.2)

The subscript in «; will be omitted to cut down on writing.

Proposition 1. Let (0, uix) be the domain of uncontinuable solutions of (2.2). Then there exists a k
= kluy, w, F)> 0, such that the inequality p{w) — ku® >0 will be satisfied in the domain mentioned. The quan-
tity k is here found just as in [1]:

1 — Bou
' (A =TyTeXp [1 — su,.,D

Exactly, as in [1], there follows from this proposition

lim (z+ Fp) = 1/o

u—u,

Proposition 2. For every F. there exist such «, for which the domain of the uncontinuable solution

(0, u,) of (2.2) is such that u,>€.

The inequality

9 00 F ,
< (62 + Fipt)exp ! 2b ) = @y (Fp)

is valid in the domain p >0, O<u< €.
Hence, inthe domain under consideration the solution of (2. 2) will not exceed the solution of the equa-
tion
dpy/du = @y (Fp)) /I pr — o, p,(0) =0
For sufficiently large «, the equation
@, (Fp) — wp == 0 2.3)

has positive roots. Let p™ be the lesser root of (2.3). Evidently, p < p', and since p+ tends monotonely to
zero as w increases. then starting with some value of w, the inequality

pr<Fl(c7 — )

is satisfied.

For those w, for which the last inequality is true, u,> €. Indeed, if it is assumed that u, =&, then we
obtain

. 1 \ 171 \
lim (p—p :T(T_u*)_p+>7(\’c_‘u*/'—7

which isimpossible, since p< p*.

Remark. A solution of the Cauchy problem (2.2} always exists in the domain (0,1 because of proposi-
tion 2.

When p (1) turns out to be positive for some «, it is necessary to increase « until the second condi-
tion of (1.2) is satisfied. When p(1):== 0, it is natural to diminish w. It can hence turn out that p{w reaches
the line u+ Fp= 1/o before pl1) vanishes, and, therefore, it is impossible to satisfy the second condition of
(1.2). It will be shown below that this latter case is realized for F exceeding some limit F, for any 0< o < 1.
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Let us consider the particular case o = 0. The assumption that either the solution of the Cauchy prob-
lem (2.2) has a vertical asymptote for u= &, or p{1) < 0 if the solution exists in the whole domain {0, €], is
false. Hence, for o= 0 a solution of the boundary-value problem (1.1, (1.2) exists for any F and is, more-
over, unique by virtue of the monotonicity of the function p(1) = p (w, 1).

Proceeding to the proof of the existence of the limit value F, , let us keep the inequality 0 <o<1in
mind.

Let us show the existence of an F, such that for any F= F, there exists a unique « for which the solu-
tion of the boundary value problem (1.1), (1.2) exists.

To determine Fy, let us use the same system as in [1]
pr(e) = F (07" —¢), p () >0 (1 —¢ (2.4)

where p* (0 and p~(w are defined in the domain (0, €), and

P <p)<p(y

Let us take the lower bound obtained in proposition 1 (p~{u = ku?) as the function p~(u).

The solution to (2.3) yields the function p*, but since this solution has not successfully been obtained
explicitly, let us add the following equation:

D, (Fp*) — wp* =0

to the system (2.4).

Solving the system (2.4) in conjunction with the latter equation, we find F;. Here and henceforth, when
the estimates are considered only in the domain (0, €). then € is substituted in place of ux in the expression
for A and k.

Now, let us show the existence of an F, such that for all F= F, no solution of (1.1) satisfying conditions
(1.2) exists.

The system

. 1/6—8
Fo= 1-—-¢ !

Fp'(s)>%—e (2.5)
is used in [1] to find F,.

Let p~(w = ku?, then F, exists only when o> 2/3¢ because the system (2.5) has a solution only for these

Hence. to prove the existence of F, for all 0 < o< 1 below. a different method of constructing the lower
bound is proposed.

If the new notation
Fp=t (0P —e)/{l—¢ =a

is introduced, then the problem of finding F, reduces to constructing the lower bound £ (0 for the equation

o, (4,
€ _p2tY . =0 (2.6)
such that the inequality
E(e)>0l—c¢

would be satisfied.

Let us divide the domain (0, €) into two (0. uy) and (u,, €). Let us construct a function &=k u? in the
domain (0, uy) such that k, u, would satisfy the inequality

529



1 — (8 + 0) uo (1 + kyug) >0 2.7

Furthermore, let us demand that k, satisfy the inequality
M = 2P®, (u, B) — 22§ — 4k,uk gk > 0 (2.8)

for all u € (0, uyl.
Taking (2.7) into account, we have
M > Frutexp [ﬁe_j‘((‘;f—fg)] — 208 — 4k oo >
— 0 14 ks .
>u? {er"p [ 1= :12)((1 - klxl;u)) ] — Zak, 4k‘2“°} >
) r ﬁoun (1 - klu(.)
>u? {F2 [t — T km)] — 2ak, — 4k12u0} >
Su{F[1 — (8 + 5) ug (4 + ko)) — 20k, — 4ky"u,}

The inequality (2.8) will be satisfied if k, is a positive root of the equation
F2[1 — (80 + 0) ug (1 + kup)l — 20k, — 4k2uy = 0
For convenience in the subsequent computations, let us take k, as a less awkward expression and less

than the positive root of this equation
oo L= (00 +9) o]
L™ 204 2F + Fug? (80 - 5)

Taking into account that in the domain (u,, €)
Ge>A(u—§° >4 (8 — 2

let us construct the function

.2 . , -2\
ba(w) = L2+ 2 + (oot — (20 + 257 | Jexp 4P — wo)]

which is a solution of the equation

d A(E22 — 2ube)
T pr A& B g, g (u) = ke

Let us select u, so that the inequality

. 2 1 — 3uq (B0 4
lim [lc,uoz— -,(2u0 4 1/;;2 )] = 0';"_:_2 3) >0

F—x

will be satisfied.

For example, let us take
uy << 1/6 (8 + o)

Evidently there is an F, such that for F = F,
(2.9)

. a2 1
Feug® — (2uo + W) T

Let us show that the function
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